Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Free Radical Biology...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Free Radical Biology and Medicine
Article
License: CC 0
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Free Radical Biology and Medicine
Article . 1989 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Oxygen radical chemistry of polyunsaturated fatty acids

Authors: Harold W. Gardner;

Oxygen radical chemistry of polyunsaturated fatty acids

Abstract

Polyunsaturated fatty acids (PUFA) are readily susceptible to autoxidation. A chain oxidation of PUFA is initiated by hydrogen abstraction from allylic or bis-allylic positions leading to oxygenation and subsequent formation of peroxyl radicals. In media of low hydrogen-donating capacity the peroxyl radical is free to react further by competitive pathways resulting in cyclic peroxides, double bond isomerization and formation of dimers and oligomers. In the presence of good hydrogen donators, such as alpha-tocopherol or PUFA themselves, the peroxyl radical abstracts hydrogen to furnish PUFA hydroperoxides. Given the proper conditions or catalysts, the hydroperoxides are prone to further transformations by free radical routes. Homolytic cleavage of the hydroperoxy group can afford either a peroxyl radical or an alkoxyl radical. The products of peroxyl radicals are identical to those obtained during autoxidation of PUFA; that is, it makes no difference whether the peroxyl radical is generated in the process of autoxidation or from a performed hydroperoxide. Of particular interest is the intramolecular rearrangement of peroxyl radicals to furnish cyclic peroxides and prostaglandin-like bicyclo endoperoxides. Other principal peroxyl radical reactions are the beta-scission of O2, intermolecular addition and self-combination. Alkoxyl radicals of PUFA, contrary to popular belief, do not significantly abstract hydrogens, but rather are channeled into epoxide formation through intramolecular rearrangement. Other significant reactions of PUFA alkoxyl radicals are beta-scission of the fatty chain and possibly the formation of ether-linked dimers and oligomers. Although homolytic reactions of PUFA hydroperoxides have received the most attention, hydroperoxides are also susceptible to heterolytic transformations, such as nucleophilic displacement and acid-catalyzed rearrangement.

Related Organizations
Keywords

Oxygen, Chemistry, Chemical Phenomena, Free Radicals, Fatty Acids, Unsaturated

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    660
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
660
Top 1%
Top 1%
Top 1%
hybrid