Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Brain Rese...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Brain Research
Article
License: CC 0
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 1996
License: CC 0
Data sources: ZENODO
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Brain Research
Article . 1996 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Characterization of an L-type calcium channel expressed by human retinal Müller (glial) cells

Authors: Puro, Donald G.; Hwang, J.-J.; Kwon, Oh-Joo; Chin, Hemin;

Characterization of an L-type calcium channel expressed by human retinal Müller (glial) cells

Abstract

The traditional notion that glial cells are permeable only to potassium has been revised. For example, glia from various parts of the nervous system have calcium-permeable ion channels. Since characterization of the calcium channels in glia is limited, the purpose of this study was to determine the molecular identity and examine the functional properties of a voltage-gated calcium channel expressed by Müller cells, the predominant glia of the retina. Whole-cell and perforated-patch recordings of human Müller cells in culture revealed a high threshold voltage-activated calcium current that is blocked by dihydropyridines, but not by omega-conotoxin GVIA or omega-conotoxin MVIIC. RT-PCR of cultured human Müller cells using primers specific for the calcium channel subunits demonstrated the expression of an L-type channel composed of the alpha 1D, alpha 2 and beta 3 subunits. The alpha 2 subunit of the Müller cell calcium channel is a splice variant which is distinct from either the skeletal muscle alpha 2s or the brain alpha 2b. Our electrophysiological experiments indicate that the alpha 1D/alpha 2/beta 3 calcium channel is functionally linked with the activation of a potassium channel that may serve as one of the pathways for the redistribution by Müller cells of excess retinal potassium.

Keywords

Retinal Ganglion Cells, Patch-Clamp Techniques, Molecular Sequence Data, Humans, Nimodipine, Amino Acid Sequence, Calcium Channels, RNA, Messenger, Neuroglia, Membrane Potentials

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    57
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 27
    download downloads 16
  • 27
    views
    16
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
57
Average
Top 10%
Top 10%
27
16
Green
hybrid