
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A three-dimensional smoothed-particle hydrocode is the basis of the present numerical simulations of conditions under which a giant collision between a proto-Mercury and a planet one-sixth its size would lead to the loss of most of the silicate mantle of Mercury and thereby account for its anomalously high density. A head-on collision at 20 km/sec, and an off-axis impact parameter of half the radius of the proto-Mercury at 35 km/sec, are approximately equal in damage yielded; both will yield a remnant whose characteristics are those of the present Mercury.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 292 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
views | 231 | |
downloads | 68 |