Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Multimedia Information Retrieval
Article . 2017 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Detection and visualization of misleading content on Twitter

Authors: Christina Boididou; Symeon Papadopoulos; Markos Zampoglou; Lazaros Apostolidis; Olga Papadopoulou; Yiannis Kompatsiaris;

Detection and visualization of misleading content on Twitter

Abstract

The problems of online misinformation and fake news have gained increasing prominence in an age where user-generated content and social media platforms are key forces in the shaping and diffusion of news stories. Unreliable information and misleading content are often posted and widely disseminated through popular social media platforms such as Twitter and Facebook. As a result, journalists and editors are in need of new tools that can help them speed up the verification process for content that is sourced from social media. Motivated by this need, in this paper, we present a system that supports the automatic classification of multimedia Twitter posts into credible or misleading. The system leverages credibility-oriented features extracted from the tweet and the user who published it, and trains a two-step classification model based on a novel semisupervised learning scheme. The latter uses the agreement between two independent pretrained models on new posts as guiding signals for retraining the classification model. We analyze a large labeled dataset of tweets that shared debunked fake and confirmed real images and videos, and show that integrating the newly proposed features, and making use of bagging in the initial classifiers and of the semisupervised learning scheme, significantly improves classification accuracy. Moreover, we present a Web-based application for visualizing and communicating the classification results to end users.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    160
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 13
    download downloads 85
  • 13
    views
    85
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
160
Top 1%
Top 1%
Top 10%
13
85
hybrid