Downloads provided by UsageCounts
In this paper we propose a fuzzy neural network prediction approach based on metaheuristics for container flow forecasting. The approach uses fuzzy if–then rules for selection between two different heuristics for developing neural network architecture, simulated annealing and genetic algorithm, respectively. These non-parametric models are compared with traditional parametric ARIMA technique. Time series composed from monthly container traffic observations for Port of Barcelona are used for model developing and testing. Models are compared based on the most important criteria for performance evaluation and for each of the data sets (total container traffic, loaded, unloaded, transit and empty) the appropriate model is selected.
Genetic algorithm, ARIMA, Neural networks, Simulated annealing, Container, Forecasting
Genetic algorithm, ARIMA, Neural networks, Simulated annealing, Container, Forecasting
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 20 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 43 | |
| downloads | 11 |

Views provided by UsageCounts
Downloads provided by UsageCounts