Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular and Cellul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular and Cellular Biochemistry
Article
License: CC 0
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Biochemistry
Article . 2005 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Inhibition of core histones acetylation by carcinogenic nickel(II)

Authors: Filip, Golebiowski; Kazimierz S, Kasprzak;

Inhibition of core histones acetylation by carcinogenic nickel(II)

Abstract

Nickel, a well-established human carcinogen, was shown to decrease acetylation of histones H4 and H3 in cultured cells. Such a decrease is expected to suppress gene expression. However, nickel is known to not only suppress but also enhance the expression of many genes. So, perhaps, nickel can alter histone acetylation in a more complex way? In a first step of testing this presumption, we examined acetylation status of histones H2A, H2B, H3 and H4, in human (HAE) and rat (NRK) cells exposed to nickel(II) under various conditions. In both cell lines, acetylation of all four histones was down-regulated by nickel(II) in a concentration- and time-dependent manner. Acetylation of histone H2B was suppressed to greater extent than that of the others, with histone H3 being relatively least affected. The analysis of acetylation status of each of the four lysine sites at the N-terminal tail of histone H2B revealed decreases consistent with those observed in the total acetylation patterns, with the K12 and K20 residues being markedly more affected than K5 and K15 residues. Thus, the decrease in acetylation was to some degree site specific. In NRK cells, the observed uniform down-regulation of histone acetylation was consistent with a marked suppression of global gene transcription measured as [3H]-uridine incorporation into mRNA. However, in HAE cells, global RNA expression was transiently increased (in 24 h) before dropping below control after longer exposure (3 days). In conclusion, the effects of Ni(II) on histone acetylation are inhibitory, with their extent depending on the dose and exposure time. This uniform inhibition, however, is not consistently reflected in global RNA expression that in HAE cells may include both increase and decrease of the expression, clearly indicating the involvement of factors other than histone acetylation. The observed effects may contribute to neoplastic transformation of Ni(II)-exposed cells.

Keywords

Time Factors, Dose-Response Relationship, Drug, Transcription, Genetic, Lysine, Gene Expression, Acetylation, Epithelial Cells, Acetates, Cell Line, Histones, Cell Transformation, Neoplastic, Carcinogens, Organometallic Compounds, Animals, Humans

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    76
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 61
    download downloads 20
  • 61
    views
    20
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
76
Top 10%
Top 10%
Top 10%
61
20
hybrid