Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Psychopharmacologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Psychopharmacology
Article
License: CC 0
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Psychopharmacology
Article . 1995 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Rate of binding of various inhibitors at the dopamine transporter in vivo

Authors: M, Stathis; U, Scheffel; S Z, Lever; J W, Boja; F I, Carroll; M J, Kuhar;

Rate of binding of various inhibitors at the dopamine transporter in vivo

Abstract

The rate of entry of drugs into brain is thought to be a factor in their abuse liability. In this investigation, we have examined the rate of entry and binding at dopamine transporters in mouse striatum for a variety of dopamine transporter inhibitors. The method utilized was based on measuring the displacement of 3H-WIN 35,428 from striatal dopamine transporter sites in vivo at different times. Eleven cocaine analogs (RTI-31, RTI-32, RTI-51, RTI-55, RTI-113, RTI-114, RTI-117, RTI-120, RTI-121, WIN 35,065-2, and WIN 35,428) as well as other dopamine uptake site blockers (bupropion, nomifensine, and methylphenidate) were compared with (-) cocaine for their rates of displacement of 3H-WIN 35,428 binding in vivo. The drugs that displayed the fastest occupancy rates were bupropion, (-) cocaine, nomifensine, and methylphenidate. RTI-51, RTI-121, RTI-114, RTI-117, RTI-120, RTI-32, RTI-55, and RTI-113, showed intermediate rates, whereas RTI-31, WIN 35,065-2, and WIN 35,428 exhibited the slowest rates of displacement. While many of the cocaine analogs have proven to be behaviorally and pharmacologically more potent than (-) cocaine, their rates of entry and binding site occupancy were slower than that for (-) cocaine. Earliest times of transporter occupancy by the different drugs were correlated (although weakly) with their degree of lipophilicity (r = 0.59; P < 0.02). Kinetic effects and metabolism of the compounds could complicate the interpretations of these data.(ABSTRACT TRUNCATED AT 250 WORDS)

Keywords

Male, Dopamine Plasma Membrane Transport Proteins, Membrane Glycoproteins, Time Factors, Membrane Transport Proteins, Mice, Inbred Strains, Nerve Tissue Proteins, Binding, Competitive, Corpus Striatum, Kinetics, Mice, Cocaine, Animals, Carrier Proteins, Bupropion

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    77
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 48
    download downloads 19
  • 48
    views
    19
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
77
Top 10%
Top 10%
Top 10%
48
19
hybrid