Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2022 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
http://dx.doi.org/10.1007/978-...
Part of book or chapter of book
License: Springer TDM
Data sources: Sygma
DBLP
Conference object
Data sources: DBLP
Steel in Translation
Article . 2022 . Peer-reviewed
versions View all 5 versions
addClaim

MaleficNet: Hiding Malware into Deep Neural Networks Using Spread-Spectrum Channel Coding

Authors: Dorjan Hitaj; Giulio Pagnotta; Briland Hitaj; Luigi V. Mancini; Fernando Pérez-Cruz;

MaleficNet: Hiding Malware into Deep Neural Networks Using Spread-Spectrum Channel Coding

Abstract

The training and development of good deep learning models is often a challenging task, thus leading individuals (developers, researchers, and practitioners alike) to use third-party models residing in public repositories, fine-tuning these models to their needs usually with little-to-no effort. Despite its undeniable benefits, this practice can lead to new attack vectors. In this paper, we demonstrate the feasibility and effectiveness of one such attack, namely malware embedding in deep learning models. We push the boundaries of current state-of-the-art by introducing MaleficNet, a technique that combines spread-spectrum channel coding with error correction techniques, injecting malicious payloads in the parameters of deep neural networks, all while causing no degradation to the model’s performance and successfully bypassing state-of-the-art detection and removal mechanisms. We believe this work will raise awareness against these new, dangerous, camouflaged threats, assist the research community and practitioners in evaluating the capabilities of modern machine learning architectures, and pave the way to research targeting the detection and mitigation of such threats.

Country
Italy
Keywords

deep learning; malware; steganography; cdma

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
Funded by
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!