Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Genetics a...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Genetics and Metabolism
Article
License: CC 0
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 1998
License: CC 0
Data sources: ZENODO
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Genetics and Metabolism
Article . 1998 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Activating Mutations of the Ca2+-Sensing Receptor

Authors: Mancilla, Edna E.; De Luca, Francesco; Baron, Jeffrey;

Activating Mutations of the Ca2+-Sensing Receptor

Abstract

The Ca2+-sensing receptor (CaR) is a member of the seven-transmembrane domain, G-protein-coupled receptor superfamily. It is expressed in parathyroid, kidney, and other tissues. In parathyroid, activation of the CaR by extracellular Ca2+ negatively regulates the secretion of parathyroid hormone. In the the thick ascending limb of Henle's loop, receptor activation decreases renal reabsorption of Ca2+. Heterozygous inactivating mutations of the CaR cause familial benign hypocalciuric hypercalcemia while homozygous inactivating mutations cause neonatal severe hyperparathyroidism. Conversely, activating mutations of the CaR cause autosomal dominant and sporadic hypoparathyroidism. Affected individuals have hypocalcemia which ranges from mild and asymptomatic to life-threatening. They also show a greater tendency to hypercalciuria than do other patients with hypoparathyroidism. Most, but not all, of the reported activating mutations occur in the amino-terminal, extracellular domain of the receptor. When expressed in cultured cells, mutant receptors can show both increased receptor sensitivity to Ca2+ and increased maximal signal transduction capacity.

Related Organizations
Keywords

Models, Molecular, Hypoparathyroidism, Receptors, Cell Surface, Cell Line, Parathyroid Glands, Mutation, Homeostasis, Humans, Calcium, Receptors, Calcium-Sensing, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 81
    download downloads 18
  • 81
    views
    18
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
26
Average
Average
Top 10%
81
18
Green
hybrid