Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2002
License: CC 0
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2002
License: CC 0
Data sources: ZENODO
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Icarus
Article . 2002 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

HST Multicolor (255–1042 nm) Photometry of Saturn's Main Rings I: Radial Profiles, Phase and Opening Angle Variations, and Regional Spectra

Authors: Luke Dones; Richard G. French; Jeffrey N. Cuzzi;

HST Multicolor (255–1042 nm) Photometry of Saturn's Main Rings I: Radial Profiles, Phase and Opening Angle Variations, and Regional Spectra

Abstract

Abstract The main rings of Saturn were observed with the Planetary Camera of the WFPC2 instrument on the Hubble Space Telescope (HST) from September 1996 to December 2000 as the ring opening angle to Earth and Sun increased from 4° to 24°, with a spread of phase angles between 0.3° and 6° at each opening angle. The rings were routinely observed in the five HST wideband UBVRI filters (F336W, F439W, F555W, F675W, and F814W) and occasionally in the F255W, F785LP, and F1042M filters. The emphasis in this series of papers will be on radial color (implying compositional) variations. In this first paper we describe the analysis technique and calibration procedure, note revisions in a previously published Voyager ring color data analysis, and present new results based on over 100 HST images. In the 300–600 nm spectral range where the rings are red, the 555/336-nm ratio increases by about 14% as the phase angle increases from 0.3° to 6°. This effect, never reported previously for the rings, is significantly larger than the phase reddening which characterizes other icy objects, primarily because of the redness of the rings. However, there is no discernible tendency for color to vary with ring opening angle at a given phase angle, and there is no phase variation of color where the spectrum is flat. We infer from this combination of facts that multiple intraparticle scattering, either in a regolith or between facts of an unusually rough surface, is important in these geometries, but that multiple interparticle scattering in a vertically extended layer is not. Voyager color ratios at a phase angle of 14° are compatible with this trend, but calibration uncertainties prevent their use in quantitative modeling. Overall ring average spectra are compatible with those of earlier work within calibration uncertainties, but ring spectra vary noticeably with region. We refine and subdivide the regions previously defined by others. The variation seen between radial profiles of ratios between different wavelengths suggests the presence of multiple compositional components with different radial distributions. We present new radial profiles of far-UV color ratio (F336W/F255W) showing substantial global variations having a different radial structure than seen between 555 and 336 nm. We constrain radial variation in the strength of a putative 850-nm spectral feature to be at the percent level or less. There seem to be real variations in the shape of regional ring spectra between 800 and 1000 nm.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    43
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 32
    download downloads 7
  • 32
    views
    7
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
43
Average
Top 10%
Top 10%
32
7
Green