Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genomicsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genomics
Article . 2001 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genomics
Article
License: CC 0
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genomics
Article . 2001
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Identification of Differentially Expressed Nucleolar TGF-β1 Target (DENTT) in Human Lung Cancer Cells That Is a New Member of the TSPY/SET/NAP-1 Superfamily

Authors: L L, Ozbun; L, You; S, Kiang; J, Angdisen; A, Martinez; S B, Jakowlew;

Identification of Differentially Expressed Nucleolar TGF-β1 Target (DENTT) in Human Lung Cancer Cells That Is a New Member of the TSPY/SET/NAP-1 Superfamily

Abstract

The transforming growth factor-beta1 (TGF-beta1) responsive epithelial non-small-cell lung cancer (NSCLC) cell line NCI-H727 was used to identify potential target genes involved in TGF-beta1-mediated responses. Comparative cDNA expression patterns between cells treated with TGF-beta1 and those treated with vehicle were generated by differential mRNA display. One 496-bp fragment, differentially increased threefold by TGF-beta1 and hybridizing to a 2.7-kb mRNA species in NCI-H727 cells by Northern analysis, revealed no significant match to any known gene sequence. The mRNA transcript of this novel gene that we named differentially expressed nucleolar TGF-beta1 target (DENTT) is expressed in several normal human tissues, with the highest level of expression in brain. Human brain cDNA library screening and 5' rapid amplification of cDNA ends yielded full-length DENTT cDNA containing an 1899-bp open reading frame encoding a predicted 633-amino-acid protein with four potential nuclear localization signals (NLSs) and two coiled-coil regions. DENTT contains a conserved 191-residue domain that shows significant identity to, and defines, the TSPY/TSPY-like/SET/NAP-1 superfamily. Enhanced green fluorescent protein (EGFP)-tagged full-length DENTT transfected into COS-7 cells showed nucleolar and cytoplasmic localization. Transfection of EGFP-tagged DENTT NLS deletion constructs lacking the bipartite NLS-1 were excluded from the nucleolus. While NLS-1 is necessary for nucleolar localization of DENTT, it is not sufficient for sole nucleolar localization. Our data show that DENTT mRNA induction by TGF-beta1 correlates with induction of TGF-beta1 mRNA, induction of extracellular matrix gene expression, and inhibition of colony formation in soft agarose in TGF-beta1 responsive NSCLC cells when exposed to TGF-beta1. TGF-beta1 does not induce DENTT mRNA expression in TGF-beta1 nonresponsive NSCLC cells. Our data suggest that this novel TGF-beta1 target gene has distinct domains for direction to different subnuclear locations.

Related Organizations
Keywords

DNA, Complementary, Lung Neoplasms, Nucleosome Assembly Protein 1, Base Sequence, Chromosomal Proteins, Non-Histone, Gene Expression Profiling, Molecular Sequence Data, Brain, Nuclear Proteins, Cell Cycle Proteins, Blotting, Northern, DNA-Binding Proteins, Gene Expression Regulation, Carcinoma, Non-Small-Cell Lung, COS Cells, Animals, Humans, Histone Chaperones, Amino Acid Sequence, Cloning, Molecular

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    60
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 43
    download downloads 22
  • 43
    views
    22
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
60
Top 10%
Top 10%
Top 10%
43
22
gold