Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochemical and Biop...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 1997
License: CC 0
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 1997
License: CC 0
Data sources: ZENODO
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 1997 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Structural Modifications of RNA Influence the 5′ Exoribonucleolytic Hydrolysis by XRN1 and HKE1 ofSaccharomyces cerevisiae

Authors: Poole, Toni L.; Stevens, Audrey;

Structural Modifications of RNA Influence the 5′ Exoribonucleolytic Hydrolysis by XRN1 and HKE1 ofSaccharomyces cerevisiae

Abstract

Two 5' exoribonucleases, XRN1 and HKE1, of Saccharomyces cerevisiae have been found to have very important cellular roles, XRN1 playing a key role in mRNA turnover and HKE1 in pre-rRNA processing. Here, an analysis of strong secondary structures in RNA that cause blocks or stalls (accumulation of RNA fragments that are shortened from the 5' end to the site of the secondary structure insertion) in the processive exoribonucleolytic hydrolysis reactions is reported. With both enzymes, oligo(G) tracts of lengths 18, 16, and 9 stall quite effectively, and the stalls are close to the start of the oligo(G) stretch. Two strong stem-loop structures cause measurable but low-level stalls with both enzymes. If the stem-loop structure is placed close to the 5' end of the RNA, substantial inhibition of overall RNA hydrolysis occurs with HKE1 and less, but measurable, inhibition with XRN1. RNA structural modification caused by protein complexing has been investigated by using poly(A) binding protein. The hydrolysis of poly(A) by XRN1 is inhibited by poly(A) binding protein, while HKE1 activity is not affected.

Keywords

Deoxyribonucleases, Saccharomyces cerevisiae Proteins, Base Sequence, Phosphoric Diester Hydrolases, Molecular Sequence Data, RNA, Fungal, Saccharomyces cerevisiae, Recombinant Proteins, Substrate Specificity, Fungal Proteins, Kinetics, Oligodeoxyribonucleotides, Phosphodiesterase I, Exoribonucleases, Mutagenesis, Site-Directed, RNA Precursors, Nucleic Acid Conformation, RNA, Messenger, RNA Processing, Post-Transcriptional, Plasmids

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 51
    download downloads 26
  • 51
    views
    26
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
41
Top 10%
Top 10%
Top 10%
51
26
Green
hybrid