Downloads provided by UsageCounts
pmid: 7893157
In the present study we examined the coupling of NADPH oxidation to substrate hydroxylation and the effects of steroids on this process in reconstituted P450scc and P450c11 systems. To determine the relative rates of substrate hydroxylation vs electron leakage we assayed both the steroid product and H2O2 in the same sample. For both P450 systems the rates of steroid product and superoxide formation increased as NADPH concentration was increased. However, P450c11 was found to be more leaky. The leakage from the P450scc system was not affected by pregnenolone, the product of cholesterol side chain cleavage. In contrast, corticosterone, the product of P450c11, increased the rate of futile NADPH oxidation by the P450c11 system. We also tested a series of steroids to analyze the stereospecificity of their effects. Relative to the control without steroid, both C-19 and C-21 steroids with 11 alpha-hydroxy groups (11 alpha-OH-testosterone and 11 alpha-OH-cortisol) decreased leakage, and those with 11 beta-OH groups (11 beta-OH-testosterone and cortisol) stimulated both NADPH oxidation and electron leakage as measured by H2O2 formation. The results revealed a correlation between the effects previously observed in living cells and in our reconstituted systems. These findings provide further evidence that mitochondrial P450 systems indeed function as a significant source of oxygen radicals in steroidogenic cells.
Hydrocortisone, Hydrogen Peroxide, Hydroxylation, Mitochondria, Electron Transport, Kinetics, Cytochrome P-450 Enzyme System, Pregnenolone, Adrenal Cortex, Animals, Cytochrome P-450 CYP11B2, Steroid 11-beta-Hydroxylase, Cattle, Hydroxytestosterones, Steroids, Cholesterol Side-Chain Cleavage Enzyme, Corticosterone, Desoxycorticosterone, Oxidation-Reduction, NADP
Hydrocortisone, Hydrogen Peroxide, Hydroxylation, Mitochondria, Electron Transport, Kinetics, Cytochrome P-450 Enzyme System, Pregnenolone, Adrenal Cortex, Animals, Cytochrome P-450 CYP11B2, Steroid 11-beta-Hydroxylase, Cattle, Hydroxytestosterones, Steroids, Cholesterol Side-Chain Cleavage Enzyme, Corticosterone, Desoxycorticosterone, Oxidation-Reduction, NADP
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 55 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 81 | |
| downloads | 19 |

Views provided by UsageCounts
Downloads provided by UsageCounts