Downloads provided by UsageCounts
pmid: 8396893
In electron (e-) transfer systems some e- may "leak," reducing O2 to a superoxide radical. This study examined the sites and kinetics of e-leakage from the mitochondrial P450scc system. Adrenodoxin reductase alone oxidized NADPH, reducing O2 to a superoxide radical at a very low rate. However, the reductase-adrenodoxin system reduced O2 at a rapid steady-state rate with Michaelis-Menten dependence on [adrenodoxin](Vmax = 3.5 micro M e-/min). After depletion of NADPH, reduced adrenodoxin was oxidized (autooxidation) with pseudo first order kinetics and the rate of e- transfer decreased 10-fold. Ca2+ (< 1 mM) stimulated e- leakage in both phases. The reductase-adrenodoxin-P450scc system exhibited the highest rate of leakage (Vmax = 7.8 microM e-/min). At low [adrenodoxin] the majority of e-leaked through P450scc and not through adrenodoxin. In the presence of the substrate, cholesterol, leakage drastically decreased to <0.5 microM e-/min. These results indicate that the mitochondrial P450 systems can leak e-, producing O2 derived free radicals. Reduction of leakage during P450scc conversion of cholesterol to pregnenolone provides a clue to understanding physiological mechanisms that control e-leakage. These may include coregulation of NADPH and cholesterol availability to the P450scc system and a system of antioxidants for quenching the oxygen radicals.
Free Radicals, Adrenodoxin, Electrons, Hydrogen Peroxide, Mitochondria, Ferredoxin-NADP Reductase, Oxygen, Kinetics, Cholesterol, Superoxides, Adrenal Cortex, Animals, Calcium, Cattle, Cholesterol Side-Chain Cleavage Enzyme, Oxidation-Reduction, NADP
Free Radicals, Adrenodoxin, Electrons, Hydrogen Peroxide, Mitochondria, Ferredoxin-NADP Reductase, Oxygen, Kinetics, Cholesterol, Superoxides, Adrenal Cortex, Animals, Calcium, Cattle, Cholesterol Side-Chain Cleavage Enzyme, Oxidation-Reduction, NADP
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 115 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 170 | |
| downloads | 24 |

Views provided by UsageCounts
Downloads provided by UsageCounts