Downloads provided by UsageCounts
doi: 10.1002/wnan.62
pmid: 20049830
AbstractWe present results on the dynamic fluorescence properties of bioconjugated nanocrystals or quantum dots (QDs) in different chemical and physical environments. A variety of QD samples was prepared and compared: isolated individual QDs, QD aggregates, and QDs conjugated to other nanoscale materials, such as single‐wall carbon nanotubes (SWCNTs) and human erythrocyte plasma membrane proteins. We discuss plausible scenarios to explain the results obtained for the fluorescence characteristics of QDs in these samples, especially for the excitation time‐dependent fluorescence emission from clustered QDs. We also qualitatively demonstrate enhanced fluorescence emission signals from clustered QDs and deduce that the band 3 membrane proteins in erythrocytes are clustered. This approach is promising for the development of QD‐based quantitative molecular imaging techniques for biomedical studies involving biomolecule clustering. WIREs Nanomed Nanobiotechnol 2010 2 48–58This article is categorized under: Diagnostic Tools > In Vitro Nanoparticle-Based Sensing Nanotechnology Approaches to Biology > Nanoscale Systems in Biology
Erythrocytes, Nanomedicine, Microscopy, Fluorescence, Quantum Dots, Animals, Humans, Molecular Imaging
Erythrocytes, Nanomedicine, Microscopy, Fluorescence, Quantum Dots, Animals, Humans, Molecular Imaging
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 37 | |
| downloads | 20 |

Views provided by UsageCounts
Downloads provided by UsageCounts