
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.1002/sim.3116
pmid: 17960579
AbstractMathematical models have proven valuable in understanding the in vivo dynamics of human immunodeficiency virus type 1 (HIV‐1), the virus that causes AIDS, and hepatitis C virus (HCV), the virus that causes hepatitis C infection. By comparing mathematical models with the data obtained from patients being treated with antiviral drugs, it has been possible to determine many quantitative features of these infections. The most dramatic finding has been that even though AIDS and hepatitis C are diseases that occur on a timescale of one or more decades, there are very rapid dynamical processes that occur on timescales of hours to days, as well as slower processes that occur on timescales of weeks to months. We show how dynamical modeling and parameter estimation techniques have uncovered these important features of HIV and HCV infection and subsequently impacted the way in which patients are treated with potent antiviral drugs. Published in 2007 by John Wiley & Sons, Ltd.
Models, Statistical, Treatment Outcome, HIV-1, Humans, HIV Infections, Hepacivirus, Hepatitis
Models, Statistical, Treatment Outcome, HIV-1, Humans, HIV Infections, Hepacivirus, Hepatitis
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 33 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
views | 306 | |
downloads | 31 |