Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio della ricer...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Magnetic Resonance in Medicine
Article . 2024 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

MR electrical properties mapping using vision transformers and canny edge detectors

Authors: Ilias I. Giannakopoulos; Giuseppe Carluccio; Mahesh B. Keerthivasan; Gregor Koerzdoerfer; Karthik Lakshmanan; Hector L. De Moura; José E. Cruz Serrallés; +1 Authors

MR electrical properties mapping using vision transformers and canny edge detectors

Abstract

AbstractPurposeWe developed a 3D vision transformer‐based neural network to reconstruct electrical properties (EP) from magnetic resonance measurements.Theory and MethodsOur network uses the magnitude of the transmit magnetic field of a birdcage coil, the associated transceive phase, and a Canny edge mask that identifies the object boundaries as inputs to compute the EP maps. We trained our network on a dataset of 10 000 synthetic tissue‐mimicking phantoms and fine‐tuned it on a dataset of 11 000 realistic head models. We assessed performance in‐distribution simulated data and out‐of‐distribution head models, with and without synthetic lesions. We further evaluated our network in experiments for an inhomogeneous phantom and a volunteer.ResultsThe conductivity and permittivity maps had an average peak normalized absolute error (PNAE) of 1.3% and 1.7% for the synthetic phantoms, respectively. For the realistic heads, the average PNAE for the conductivity and permittivity was 1.8% and 2.7%, respectively. The location of synthetic lesions was accurately identified, with reconstructed conductivity and permittivity values within 15% and 25% of the ground‐truth, respectively. The conductivity and permittivity for the phantom experiment yielded 2.7% and 2.1% average PNAEs with respect to probe‐measured values, respectively. The in vivo EP reconstruction truthfully preserved the subject's anatomy with average values over the entire head similar to the expected literature values.ConclusionWe introduced a new learning‐based approach for reconstructing EP from MR measurements obtained with a birdcage coil, marking an important step towards the development of clinically‐usable in vivo EP reconstruction protocols.

Keywords

vision transformers, Phantoms, Imaging, Electric Conductivity, Brain, transfer learning, Magnetic Resonance Imaging, Imaging, Three-Dimensional, electrical properties mapping; electromagnetic simulations; transfer learning; vision transformers, electromagnetic simulations, Image Processing, Computer-Assisted, Humans, Neural Networks, Computer, Head, electrical properties mapping, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
Green