Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Carcinogen...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Carcinogenesis
Article
License: CC 0
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2009
License: CC 0
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2009
License: CC 0
Data sources: ZENODO
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Carcinogenesis
Article . 2008 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Down‐regulation of the microRNAs miR‐34a, miR‐127, and miR‐200b in rat liver during hepatocarcinogenesis induced by a methyl‐deficient diet

Authors: Tryndyak, Volodymyr P.; Ross, Sharon A.; Beland, Frederick A.; Pogribny, Igor P.;

Down‐regulation of the microRNAs miR‐34a, miR‐127, and miR‐200b in rat liver during hepatocarcinogenesis induced by a methyl‐deficient diet

Abstract

AbstractAltered expression of microRNAs (miRNAs) has been reported in diverse human cancers; however, the down‐regulation or up‐regulation of any particular miRNAs in cancer is not sufficient to address the role of these changes in carcinogenesis. In this study, using the rat model of liver carcinogenesis induced by a methyl‐deficient diet, which is relevant to the hepatocarcinogenesis in humans associated with viral hepatitis C and B infections, alcohol exposure and metabolic liver diseases, we showed that the development of hepatocellular carcinoma (HCC) is characterized by prominent early changes in expression of miRNA genes, specifically by inhibition of expression of microRNAs miR‐34a, miR‐127, miR‐200b, and miR‐16a involved in the regulation of apoptosis, cell proliferation, cell‐to‐cell connection, and epithelial‐mesenchymal transition. The mechanistic link between these alterations in miRNAs expression and the development of HCC was confirmed by the corresponding changes in the levels of E2F3, NOTCH1, BCL6, ZFHX1B, and BCL2 proteins targeted by these miRNAs. The significance of miRNAs expression dysregulation in respect to hepatocarcinogenesis was confirmed by the persistence of these miRNAs alterations in the livers of methyl‐deficient rats re‐fed a methyl‐adequate diet. Altogether, the early occurrence of alterations in miRNAs expression and their persistence during the entire process of hepatocarcinogenesis indicate that the dysregulation of microRNAs expression may be an important contributing factor in the development of HCC. © 2008 Wiley‐Liss, Inc.

Keywords

Male, Reverse Transcriptase Polymerase Chain Reaction, Blotting, Western, Down-Regulation, Apoptosis, Rats, Inbred F344, Diet, Rats, MicroRNAs, Liver Neoplasms, Experimental, Animals

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    142
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 25
    download downloads 20
  • 25
    views
    20
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
142
Top 10%
Top 10%
Top 10%
25
20
Green
hybrid