Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ChemElectroChemarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ChemElectroChem
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Operando Acoustic Spectroscopy for Optimizing Gas Evolution In Hydrogen Evolution Reaction and the Oxygen Evolution Reaction Processes

Authors: Christopher Kent; Alex Knowles; Ailbe Ó Manacháin; Colm O’Dwyer; Dara Fitzpatrick;

Operando Acoustic Spectroscopy for Optimizing Gas Evolution In Hydrogen Evolution Reaction and the Oxygen Evolution Reaction Processes

Abstract

The use of earth‐abundant materials for novel electrodes for solar‐driven electrolysis will play a significant role in the future production of hydrogen as a green energy source. The choice of electrolyte will play a major role in how efficient and stable future photoelectrochemical cells (PEC) operate. A new approach to determining PEC efficiency using broadband acoustic resonance dissolution spectroscopy (BARDS) is investigated to analyze the real‐time production of hydrogen and oxygen at platinum electrodes in different electrolyte solutions. The parameters investigated include concentration of electrolyte, surface area of the electrode, and the potential applied to the cell. Herein, the suitability of neutral buffer as an electrolyte on a par with either acid or basic electrolytes is shown. This finding allows for the potential design of solar to hydrogen electrolysers which can operate under mild, neutral, and stable conditions using earth‐abundant materials for hydrogen production. It is also shown how BARDS can readily visualize and track gas evolution in real‐time and in situ in an open system without the need for gas collection. It is anticipated that the technique can be utilized in the future evaluation of newly developed electrode materials in terms of efficiency, stability, and life span.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold