Downloads provided by UsageCounts
AbstractDeep learning methods for the prediction of molecular excitation spectra are presented. For the example of the electronic density of states of 132k organic molecules, three different neural network architectures: multilayer perceptron (MLP), convolutional neural network (CNN), and deep tensor neural network (DTNN) are trained and assessed. The inputs for the neural networks are the coordinates and charges of the constituent atoms of each molecule. Already, the MLP is able to learn spectra, but the root mean square error (RMSE) is still as high as 0.3 eV. The learning quality improves significantly for the CNN (RMSE = 0.23 eV) and reaches its best performance for the DTNN (RMSE = 0.19 eV). Both CNN and DTNN capture even small nuances in the spectral shape. In a showcase application of this method, the structures of 10k previously unseen organic molecules are scanned and instant spectra predictions are obtained to identify molecules for potential applications.
organic molecules, Artificial intelligence, ta114, Science, Q, Full Papers, artificial intelligence, DFT calculations, neural networks, excitation spectra, Organic molecules, Neural networks, Excitation spectra, ddc: ddc:
organic molecules, Artificial intelligence, ta114, Science, Q, Full Papers, artificial intelligence, DFT calculations, neural networks, excitation spectra, Organic molecules, Neural networks, Excitation spectra, ddc: ddc:
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 210 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.1% |
| views | 21 | |
| downloads | 13 |

Views provided by UsageCounts
Downloads provided by UsageCounts