
As researchers embrace open and transparent data sharing, they will need to provide informationabout their data that effectively helps others understand its contents. Without properdocumentation, data stored in online repositories such as OSF will often be rendered unfindableand unreadable by other researchers and indexing search engines. Data dictionaries andcodebooks provide a wealth of information about variables, data collection, and other important facets of a dataset. This information, called metadata, provides key insights into how the data might be further used in research and facilitates search engine indexing to reach a broader audience of interested parties. This tutorial first explains the terminology and standards surrounding data dictionaries and codebooks. We then present a guided workflow of the entire process from source data (e.g., survey answers on Qualtrics) to an openly shared dataset accompanied by a data dictionary or codebook that follows an agreed-upon standard. Finally, we explain how to use freely available web applications to assist this process of ensuring that psychology data are findable, accessible, interoperable, and reusable (FAIR; Wilkinson et al.,2016).
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
