
Understanding the limits of list-decoding and list-recovery of Reed-Solomon (RS) codes is of prime interest in coding theory and has attracted a lot of attention in recent decades. However, the best possible parameters for these problems are still unknown, and in this paper, we take a step in this direction. We show the existence of RS codes that are list-decodable or list-recoverable beyond the Johnson radius for \emph{any} rate, with a polynomial field size in the block length. In particular, we show that for any $ε\in (0,1)$ there exist RS codes that are list-decodable from radius $1-ε$ and rate less than $\fracε{2-ε}$, with constant list size. We deduce our results by extending and strengthening a recent result of Ferber, Kwan, and Sauermann on puncturing codes with large minimum distance and by utilizing the underlying code's linearity.
FOS: Computer and information sciences, Information Theory (cs.IT), FOS: Mathematics, Combinatorics (math.CO)
FOS: Computer and information sciences, Information Theory (cs.IT), FOS: Mathematics, Combinatorics (math.CO)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
