Powered by OpenAIRE graph
Found an issue? Give us feedback

Molecular dynamical modelling of endohedral fuller

Molecular dynamical modelling of endohedral fuller

Abstract

The initial stages of fullerene and endohedral metallofullerene (EMF) synthesis in carbon-helium plasma at 1500 K and 2500 K have been simulated with quantum chemical molecular dynamics (MD) based on the density functional theory (DFT) method. The results of the simulation show that the fullerene and EMF molecules are formed in the plasma through the interaction of carbon and helium atoms. The fullerene molecules are formed in the plasma at 1500 K, while the EMF molecules are formed at 2500 K. The simulation results also show that the EMF molecules are more stable than the fullerene molecules.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average