Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Project Euclidarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Project Euclid
Other literature type . 2018
Data sources: Project Euclid
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Chapter 13. On the weak convergence in $\mathbb{L}^p$ Spaces

Authors: SEYDI, Hamet;

Chapter 13. On the weak convergence in $\mathbb{L}^p$ Spaces

Abstract

The aim of this paper is to prove the following theorem. ¶Theorem 34. Let $X$ be a locally Hausdorff compact space, $\mu$ a Radon Nykodym on $X$ and $(f_{n})$ be a sequence of measurable functions (with respect to $\mu$) belonging to $\mathcal{L}^{p}(X,\mu)$ which converges in measure to a measurable function. Let $\={g}$ stand for the equivalence class of a measurable function $g$ with the equivalence relation $\mathcal R$ induced by the v-a.e equality and $\mathcal{L}^{p}(X,\mu)$ be the quotient by $\mathcal R$. Then the following conditions are equivalent. [start-list] *The function $\={f}$ belongs to $\mathcal{L}^{p}$ and $(\={f})_{n \ge 0}$ weakly converges to $\={f}$ in $\mathbb{L}^{p}$. *The sequence $(\={f})_{n \ge 0}$ weakly converges in $\mathbb{L}^{p}$. *The sequence is $(\={f})_{n \ge 0}$ is bounded $\mathbb{L}^{p}$.[end-list]

Keywords

28C05, integration theory, 28A51, weak convergence, Radon measures, locally compact space, 28A25

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green