Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

M-calpain levels increase during fusion of myoblasts in the mutant muscular dysgenesis (mdg) mouse.

Authors: Sandra Joffroy; Jean-Jacques Brustis; Patrick Cottin; Jean-Paul Delage; Jeanine Koenig; Nathalie Dourdin;

M-calpain levels increase during fusion of myoblasts in the mutant muscular dysgenesis (mdg) mouse.

Abstract

Previous studies have led to the hypothesis of a possible role for the calcium-dependent neutral protease m-calpain in myoblast fusion in culture. To evaluate this hypothesis, we chose as our model, the "muscular dysgenesis" mouse (mdg), which presents in vivo and in vitro characteristics of an elevated process of fusion (Yao and Essien, 1975; Dussartre, 1993; Ashby et al., 1993, Joffroy et al., 1999). The aim of this study was to demonstrate using myoblast cell lines and muscle biopsies from this mdg mutant, that the amount of m-calpain increases significantly as multinucleated myotubes are formed. Using immunoblot analysis, it was shown that the m-calpain concentration in a dysgenic cell line (GLT) increased 3-fold compared to what it was upon the introduction of the differentiation medium. On the other hand, in a normal cell line (NLT), the concentration of m-calpain did not vary significantly. Thus, when the transition from myoblasts to myotubes was slow, and the absolute level of fusion was reduced, as in the NLT cell line, the level of m-calpain was stable. In contrast, when the process of fusion was precocious and fast, and the level of fusion was elevated, such as in the GLT cell line, the concentration of m-calpain increased during fusion. Moreover, when myoblast fusion was prevented by the addition of calpain inhibitor II, the process was reduced by approximately 93%. Taking into account these observations, it is clear from our data that the muscular dysgenesis mouse provides a relevant model to study myoblast fusion and that m-calpain is involved in this process.

Keywords

Calpain, Cell Differentiation, Immunohistochemistry, Mice, Mutant Strains, Cell Line, Cell Fusion, Kinetics, Mice, Microscopy, Electron, Animals, Muscle, Skeletal

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Average
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!