Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cellular Physiology ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

AMPKα1-sensitivity of Orai1 and Ca(2+) entry in T - lymphocytes.

Authors: Shefalee K. Bhavsar; Sebastian Schmidt; Diwakar Bobbala; Meerim K. Nurbaeva; Zohreh Hosseinzadeh; Katja Merches; Abul Fajol; +2 Authors

AMPKα1-sensitivity of Orai1 and Ca(2+) entry in T - lymphocytes.

Abstract

T-lymphocyte activation and function critically depends on Ca(2+) signaling, which is regulated by store operated Ca(2+) entry (SOCE). Human and mouse T lymphocytes express AMP activated kinase AMPKα1, which is rapidly activated following elevation of cytosolic Ca(2+) concentration ([Ca(2+)]i) by treatment of the cells with Ca(2+) ionophore or following inhibition of endosomal Ca(2+) ATPase with thapsigargin. AMPK is further activated by triggering of the T cell antigen receptor (TCR). The present study explored whether AMPK influences Ca(2+) entry and Ca(2+)-sensitive regulation of T-lymphocyte function.T-lymphocytes were isolated and cultured from AMPKα1-deficient (ampk(-/-)) mice and from their wildtype (ampk(+/+)) littermates. The phenotype of the cells was analysed by flow cytometry, [Ca(2+)]i estimated from Fura-2 fluorescence, SOCE from increase of [Ca(2+)]i following thapsigargin treatment (1 µM), and cell function analysed by measuring cytokine secretion and western blotting.Expression of surface markers in CD4(+) and CD8(+) T-cells were similar in ampk(-/-) and ampk(+/+) T-lymphocyte blasts. Moreover, total STIM1 protein abundance was similar in ampk(-/-) and ampk(+/+) T-lymphocyte blasts. However, Orai1 cell membrane protein abundance was significantly higher in ampk(-/-) than in ampk(+/+) T-lymphocyte blasts. SOCE and increase of [Ca(2+)]i following TCR activation by triggering TCR with anti-CD3 and cross-linking secondary antibody were both significantly more pronounced in ampk(-/-) than in ampk(+/+) T-lymphocyte blasts. The difference of Ca(2+) entry between ampk(-/-) and ampk(+/+) T-lymphocytes was abrogated by Orai1 inhibitor 2-aminoethoxydiphenyl borate (2-APB, 50 µM). Proliferation of unstimulated ampk(-/-) lymphocytes was higher than proliferation of ampk(+/+) T-lymphocytes, a difference reversed by Orai1 silencing.AMPK downregulates Orai1 and thus SOCE in T-lymphocytes and thus participates in negative feed-back regulation of cytosolic Ca(2+) activity.

Related Organizations
Keywords

Boron Compounds, CD4-Positive T-Lymphocytes, Orai1, CD3 Complex, ORAI1 Protein, Physiology, T lymphocytes, Receptors, Antigen, T-Cell, QD415-436, AMP-Activated Protein Kinases, CD8-Positive T-Lymphocytes, Biochemistry, Antibodies, Mice, QP1-981, Animals, Stromal Interaction Molecule 1, RNA, Small Interfering, Cells, Cultured, Cell Proliferation, Mice, Knockout, Membrane Glycoproteins, AMP-activated protein kinase, Calcium, RNA Interference, Calcium Channels, Fura-2

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Average
Top 10%
Top 10%
gold