
A number of dibenzothiazepinones and dibenzoxazepinones have been designed, synthesized and evaluated as calcium antagonists. Molecular geometries of these dibenzotricyclic calcium antagonists have been studied using X-ray crystallography, molecular modeling and two-dimensional NMR spectroscopy. X-Ray diffraction reveals dibenzothiazepinone 1 and dibenzoxazepinone 2 to have, respectively, flexure angles of 108 degrees and 116.9 degrees between the two benzene rings. The molecular mechanics-optimized geometry of dibenzothiazepinone 1 shows a 7 degrees smaller flexure angle than the X-ray crystallographic result, while that of dibenzoxazepinone 2 has an angle only 2 degrees smaller than the X-ray result. AM1 and ab initio calculations show that the side chains can affect the geometry of the tricyclic nucleus and both 1 and 2 have negative electrostatic potentials around the bridged portion of the tricyclics. Two-dimensional NOESY NMR spectroscopy supports the extended geometry of the 6 carbon spacer as obtained from X-ray crystallography and molecular mechanics calculations. Vasorelaxation properties among these compounds appear to be relatively insensitive to the flexure angle and to chain length. Vasorelaxation is profoundly influenced by the nature of the basic terminal moiety.
Models, Molecular, Vasodilation, Dibenzothiazepines, Structure-Activity Relationship, Magnetic Resonance Spectroscopy, Cricetinae, Dibenzoxazepines, Animals, Calcium, Crystallography, X-Ray, Aorta
Models, Molecular, Vasodilation, Dibenzothiazepines, Structure-Activity Relationship, Magnetic Resonance Spectroscopy, Cricetinae, Dibenzoxazepines, Animals, Calcium, Crystallography, X-Ray, Aorta
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
