Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Caltech Authors (Cal...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cell death regulation in Drosophila: conservation of mechanism and unique insights.

Authors: Vernooy, Stephanie Y.; Copeland, Jeffrey; Ghaboosi, Nazli; Griffin, Erik E.; Yoo, Soon Ji; Hay, Bruce A.;

Cell death regulation in Drosophila: conservation of mechanism and unique insights.

Abstract

Programmed cell death, or apoptosis, is a genetically encoded form of cell suicide that results in the orderly death and phagocytic removal of excess, damaged, or dangerous cells during normal development and in the adult. The cellular machinery required to carry out apoptosis is present in most, if not all cells, but is only activated in cells instructed to die (for review see Jacobson et al. 1997). Here, we review cell death regulation in the fly in the context of a first pass look at the complete Drosophila genome and what is known about death regulation in other organisms, particularly worms and vertebrates. ; © 2000 The Rockefeller University Press. Submitted 15 June 2000;revised 21 June 2000;accepted 21 June 2000. This work was supported by grants to B.A. Hay from a Burroughs Wellcome Fund New Investigator Award in the Pharmacological Sciences, the Ellison Medical Foundation, and from the National Institutes of Health (No. GM057422-01). S.J. Yoo is supported by a postdoctoral fellowship from the Jane Coffin Childs Foundation. ; Published - VERjcb00.pdf

Related Organizations
Keywords

MELANOGASTER, 570, Genomic Library, Genome, PROTEINS, Apoptosis, GRIM, GENE, FAMILY, HOMOLOG, BACULOVIRUS INHIBITOR, Drosophila melanogaster, REAPER, Animals, CASPASE, INDUCED APOPTOSIS

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    93
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
93
Top 10%
Top 10%
Top 1%