Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Visionarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Vision
Article . 2018
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multicellular tumor spheroids of human uveal melanoma induce genes associated with anoikis resistance, lipogenesis, and SSXs.

Authors: Charlotte, Ness; Øystein, Garred; Nils A, Eide; Theresa, Kumar; Ole K, Olstad; Thomas P, Bærland; Goran, Petrovski; +2 Authors

Multicellular tumor spheroids of human uveal melanoma induce genes associated with anoikis resistance, lipogenesis, and SSXs.

Abstract

Uveal melanoma (UM) has a high propensity for metastatic spread, and approximately 40-50% of patients die of metastatic disease. Metastases can be found at the time of diagnosis but also several years after the tumor has been removed. The survival of disseminated cancer cells is known to be linked to anchorage independence, anoikis resistance, and an adaptive cellular metabolism. The cultivation of cancer cells as multicellular tumor spheroids (MCTS) by anchorage-independent growth enriches for a more aggressive phenotype. The present study examines the differential gene expression of adherent cell cultures, non-adherent MCTS cultures, and uncultured tumor biopsies from three patients with UM. We elucidate the biochemical differences between the culture conditions to find whether the culture of UM as non-adherent MCTS could be linked to an anchorage-independent and more aggressive phenotype, thus unravelling potential targets for treatment of UM dissemination.The various culture conditions were evaluated with microarray analysis, quantitative reverse-transcription polymerase chain reaction (qRT-PCR), RNAscope, immunohistochemistry (IHC), and transmission electron microscopy (TEM) followed by gene expression bioinformatics.The MCTS cultures displayed traits associated with anoikis resistance demonstrated by ANGPTL4 upregulation, and a shift toward a lipogenic profile by upregulation of ACOT1 (lipid metabolism), FADS1 (biosynthesis of unsaturated fatty acids), SC4MOL, DHCR7, LSS (cholesterol biosynthesis), OSBPL9 (intracellular lipid receptor), and PLIN2 (lipid storage). Additionally, the present study shows marked upregulation of synovial sarcoma X breakpoint proteins (SSXs), transcriptional repressors related to the Polycomb group (PcG) proteins that modulate epigenetic silencing of genes.The MCTS cultures displayed traits associated with anoikis resistance, a metabolic shift toward a lipogenic profile, and upregulation of SSXs, related to the PcG proteins.

Related Organizations
Keywords

Uveal Neoplasms, Reverse Transcriptase Polymerase Chain Reaction, Lipogenesis, Computational Biology, Anoikis, Immunohistochemistry, Neoplasm Proteins, Gene Expression Regulation, Neoplastic, Repressor Proteins, Delta-5 Fatty Acid Desaturase, Uveal Melanoma, Cell Line, Tumor, Spheroids, Cellular, Humans, Melanoma, In Situ Hybridization

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
gold