Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Enhanced expression of Ca2+ channel alpha1A and beta4 subunits and phosphorylated tyrosine hydroxylase in the adrenal gland of N-type Ca2+ channel alpha1B subunit-deficient mice with a CBA/JN genetic background.

Authors: Eiki, Takahashi; Takeshi, Nagasu;

Enhanced expression of Ca2+ channel alpha1A and beta4 subunits and phosphorylated tyrosine hydroxylase in the adrenal gland of N-type Ca2+ channel alpha1B subunit-deficient mice with a CBA/JN genetic background.

Abstract

Electrophysiologic studies have demonstrated that adrenal medulla chromaffin cells express voltage-dependent P/Q-, N-, L-, and R-type Ca2+ channels and that these channels regulate release of norepinephrine and epinephrine. However, N-type Ca2+ channel alpha1B-deficient mice with a CBA/JN background show normal plasma norepinephrine and epinephrine levels, presumably owing to compensation by other gene(s). To examine the expression patterns of the P/Q-type alpha1A, L-type alpha1C/alpha1D, and R-type alpha1E, beta1, beta2, beta3, and beta4 subunits, as well as of tyrosine hydroxylase (Th), dopamine beta hydroxylase (Dbh), and phenylethanolamine-N-methyltransferase (Pnmt) in the adrenal gland of alpha1B-deficient mice, we used real-time quantitative reverse transcription-polymerase chain reaction and Western blot analyses. The expression levels of alpha1A, beta4, Th, and Th phosphorylated at serine 40 were higher in homozygous mice than in wild-type and heterozygous mice, but the expression levels of alpha1C, alpha1D, alpha1E, beta1, beta2, beta3, Dbh, and Pnmt did not differ among wild-type, heterozygous, and homozygous mice. These results suggest that the compensatory mechanisms to maintain normal levels of epinephrine and norepinephrine in the adrenal gland of N-type Ca2+ channel alpha1B-deficient mice include increased expression of alpha1A and beta4 subunits and increased catecholamine biosynthetic activity.

Keywords

Male, Mice, Knockout, Calcium Channels, L-Type, Epinephrine, Genotype, Reverse Transcriptase Polymerase Chain Reaction, Blotting, Western, Gene Expression, Calcium Channels, P-Type, Calcium Channels, Q-Type, Mice, Norepinephrine, Calcium Channels, N-Type, Adrenal Glands, Models, Animal, Mice, Inbred CBA, Animals, Female, RNA, Messenger, Phosphorylation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!