Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

[A method of showing thermal effect of iron oxide nanoparticles in alternating magnetic field].

Authors: Xuan, Liu; Bo, Xu; Qi-Sheng, Xia; Tian-De, Zhao; Jin-Tian, Tang;

[A method of showing thermal effect of iron oxide nanoparticles in alternating magnetic field].

Abstract

Ferromagnet has thermal effect in alternating magnetic field (AMF). Magnetically mediating hyperthermia is to localize magnetic substance within tumor tissue under AMF to promote the targeting ability and heat distribution of hyperthermia. This study was to develop a new method of showing the thermal effect of iron oxide Fe3O4 nanoparticles in AMF in vitro.Melted polyethelene glycol (PEG) was dropped on a slide to form crystal monolayer after cooling, and was covered with a bipartite blood coverslip. Certain amount of Fe3O4 powder (average diameter, 10 nm) was added in the gap of the blood coverslip to form a strip wandering on the slide with the width of 0.5-1.0 mm. This apparatus, named analog vessel bed, was then alternated in a 4.6 mT AMF at 100-250 kHz for 15 min. The changes of PEG crystal images were observed under micropolariscope. The thermal range of the heated Fe3O4 powder was affirmed according to melting status and melting point value of PEG crystal.In AMF, 5 mg of Fe3O4 could rise the temperature to above 45 degrees C-50 degrees C, which exceeded the required hyperthermic temperature 43 degree C; 15 mg of Fe3O4 could rise the temperature to no more than 59 degrees C-61 degrees C; while 25 mg of Fe3O4 could be heated up to 59 degrees C-61 degrees C. The PEG melting area was enlarged with the increasing Fe3O4 quantity or decreasing PEG melting point.The analog vessel bed apparatus could display the thermal effect of Fe3O4 nanoparticles in AMF, and would be helpful for further studies on effect of magnetically mediated hyperthermia on cancer cells.

Related Organizations
Keywords

Electromagnetic Fields, Hot Temperature, Temperature, Nanoparticles, Hyperthermia, Induced, Ferric Compounds, Polyethylene Glycols

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Cancer Research
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!