Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Eck receptor tyrosine kinase is implicated in pattern formation during gastrulation, hindbrain segmentation and limb development.

Authors: P, Ganju; K, Shigemoto; J, Brennan; A, Entwistle; A D, Reith;

The Eck receptor tyrosine kinase is implicated in pattern formation during gastrulation, hindbrain segmentation and limb development.

Abstract

Members of the protein superfamily of transmembrane receptor tyrosine kinases are key components of intercellular signal transduction pathways that elicit appropriate cellular responses to environmental cues during development of multicellular organisms. In a search for additional receptor tyrosine kinases expressed during mouse embryogenesis we cloned the murine homolog of Eck, a member of the Eph subfamily, that maps to the distal region of mouse chromosome 4. Specific antisera defined Eck in murine embryonic cells as a glycoprotein of 130 kDa with an intrinsic autophosphorylation activity. Immunohistochemical staining and laser scanning microscopy revealed a dynamic and tightly regulated distribution of Eck receptor protein in the developing mouse embryo. During gastrulation, a high transient distribution of Eck was seen in mesodermal cells aggregating in the midline as notochordal plate. A similar restriction of Eck receptor protein was apparent along the rostrocaudal axis of the developing neural tube. In hindbrain neuroepithelia, Eck protein localised specifically to cells of rhombomere 4 and was also seen transiently in cells populating second and third branchial arches and neurogenic facial crest VII-VIII and IX-X. Receptor distribution also implicated Eck in development of the proximodistal axis of the limb, expression being restricted to distal regions of limb bud mesenchyme. At later stages, additional sites of Eck protein expression were seen in the cartilaginous model of the skeleton, tooth primordia, infundibular component of the pituitary and various fetal tissue epithelia. Taken together, our data suggest pleiotropic functions for the Eck receptor, initially in distinctive aspects of pattern formation and subsequently in development of several fetal tissues, and reveal possible allelism with known mouse developmental mutant loci.

Related Organizations
Keywords

Base Sequence, Receptor, EphA2, Molecular Sequence Data, Chromosome Mapping, Membrane Proteins, Extremities, Gastrula, Protein-Tyrosine Kinases, Mice, Inbred C57BL, Rhombencephalon, Mice, Branchial Region, Animals, Cloning, Molecular, Cells, Cultured

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    89
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
89
Average
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!