Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Genomic structure of mouse copper chaperone, COX17.

Authors: Y, Takahashi; K, Kako; K, Ohmura; K, Tsumori; Y, Ohmasa; S, Kashiwabara; T, Baba; +1 Authors

Genomic structure of mouse copper chaperone, COX17.

Abstract

Coxl7p was first cloned as a cytoplasmic copper chaperone from yeast mutant and recent works suggested the existence of mammalian homologues. Previous report has shown that a gel filtration fraction of heart extract containing porcine Coxl7p peptide promoted the survival of NIH3T3 fibroblast cells. In the present study, we first cloned DNA fragments of the mouse COX17 gene. The mouse COX17 spans approximately 6kb and consists of three exons. It was mapped to the center of chromosome 16, using a radiation hybrid-mapping panel. The major transcription start site is 80 bp upstream of the ATG initiation codon as determined by rapid amplification of cDNA ends (5'-RACE) analysis. Two potential polyadenylation sites are 3233 and 3293 bp downstream of the termination codon, respectively. Transient transfection of reporter plasmids containing portions of the mouse COX17 5'-flanking region into AtT-20 and NIH3T3 cells allowed the localization of the essential promoter to a 0.8 kb region upstream of the transcription starting site. Furthermore, the transfected luciferase activity was much higher in AtT-20 than NIH3T3. According to sequence analysis of the approximately 0.8kb 5'-flanking region, GC rich segments including consensus sequences for binding of the transcription factor Sp1, but no TATA/CAAT boxes, exist in the region of the transcription start site. Besides the GC box, binding sites for NRF-1 and 2 known as specific transcription factors for COX subunits are also localized around the transcription starting site.

Keywords

Mice, Saccharomyces cerevisiae Proteins, Base Sequence, Copper Transport Proteins, Molecular Sequence Data, Animals, Chromosome Mapping, Sequence Analysis, DNA, Promoter Regions, Genetic, Cation Transport Proteins, Molecular Chaperones

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!