Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ European Review for ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Role of reactive oxygen species in p53 activation during cisplatin-induced apoptosis of rat mesangial cells.

Authors: S-M, Ju; H-O, Pae; W-S, Kim; D-G, Kang; H-S, Lee; B-H, Jeon;

Role of reactive oxygen species in p53 activation during cisplatin-induced apoptosis of rat mesangial cells.

Abstract

Nephrotoxicity is one of the main side effects of the anticancer drug cisplatin, and one of its main therapeutic limitations. It has been suggested that p53 activation plays important roles in renal cell injury by cisplatin. However, the mechanism of p53 activation by cisplatin is unclear. This study examined whether reactive oxygen species (ROS) production by cisplatin would be linked to p53 activation in rat mesangial cells.Renal cells were incubated with cisplatin in the absence or presence of pifithrin-a (PFT), N-acetyl-cysteine (NAC), or dimethylthiourea (DMT). Cell viability was evaluated by 3-(4,5-dimethyl-2-thiazol yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Apoptosis was evaluated by caspase-3 activity and cleavage of poly (ADP-ribose) polymerase (PARP). The relative levels of ROS and p53 phosphorylation were determined by fluorometric assay and Western blot analysis, respectively.Cisplatin induced apoptotic cell death via caspase-3 activation and PARP cleavage, and also increased p53 activation and ROS production. The p53 inhibitor PFT inhibited cisplatin-induced apoptosis. NAC and DMT, two antioxidants, also inhibited cisplatin-induced apoptosis. Interestingly, NAC and DMT reduced ROS production and suppressed p53 activation in renal cells exposed to cisplatin.Our results suggest that the ability of cisplatin to induce apoptosis of rat mesangial cells requires ROS-dependent p53 activation, thus, supporting the potential therapeutic role of antioxidants in preventing the cisplatin nephrotoxicity.

Related Organizations
Keywords

Time Factors, Dose-Response Relationship, Drug, Caspase 3, Cell Survival, Antineoplastic Agents, Apoptosis, Antioxidants, Cell Line, Rats, Mesangial Cells, Animals, Cisplatin, Phosphorylation, Poly(ADP-ribose) Polymerases, Tumor Suppressor Protein p53, Reactive Oxygen Species, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Average
Average
Top 10%
gold