Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Toll/IL-1 signaling is critical for house dust mite-specific helper T cell type 2 and type 17 [corrected] responses.

Authors: Simon, Phipps; Chuan En, Lam; Gerard E, Kaiko; Shen Yun, Foo; Adam, Collison; Joerg, Mattes; Jessica, Barry; +6 Authors

Toll/IL-1 signaling is critical for house dust mite-specific helper T cell type 2 and type 17 [corrected] responses.

Abstract

One of the immunopathological features of allergic inflammation is the infiltration of helper T type 2 (Th2) cells to the site of disease. Activation of innate pattern recognition receptors such as Toll-like receptors (TLRs) plays a critical role in helper T type 1 cell differentiation, yet their contribution to the generation of Th2 responses to clinically relevant aeroallergens remains poorly defined.To determine the requirement for TLR2, TLR4, and the Toll/IL-1 receptor domain adaptor protein MyD88 in a murine model of allergic asthma.Wild-type and factor-deficient ((-/-)) mice were sensitized intranasally to the common allergen house dust mite (HDM) and challenged 2 weeks later on four consecutive days. Measurements of allergic airway inflammation, T-cell cytokine production, and airway hyperreactivity were performed 24 hours later.Mice deficient in MyD88 were protected from the cardinal features of allergic asthma, including granulocytic inflammation, Th2 cytokine production and airway hyperreactivity. Although HDM activated NF-kappaB in TLR2- or TLR4-expressing HEK cells, only in TLR4(-/-) mice was the magnitude of allergic airway inflammation and hyperreactivity attenuated. The diminished Th2 response present in MyD88(-/-) and TLR4(-/-) mice was associated with fewer OX40 ligand-expressing myeloid dendritic cells in the draining lymph nodes during allergic sensitization. Finally, HDM-specific IL-17 production and airway neutrophilia were attenuated in MyD88(-/-) but not TLR4(-/-) mice.Together, these data suggest that Th2- and Th17-mediated inflammation generated on inhalational HDM exposure is differentially regulated by the presence of microbial products and the activation of distinct MyD88-dependent pattern recognition receptors.

Related Organizations
Keywords

Inflammation, Mice, Inbred BALB C, Neutrophils, Interleukin-17, Mice, Transgenic, Dendritic Cells, Asthma, Immunity, Innate, Disease Models, Animal, Epitopes, Mice, Cell Movement, Immunoglobulin G, Eosinophilia, Myeloid Differentiation Factor 88, Animals, Humans, Goblet Cells, Interleukin-5, Administration, Intranasal

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    141
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
141
Top 10%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!