Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The mechanism of growth-inhibitory effect of DOC-2/DAB2 in prostate cancer. Characterization of a novel GTPase-activating protein associated with N-terminal domain of DOC-2/DAB2.

Authors: Zhi, Wang; Ching-Ping, Tseng; Rey-Chen, Pong; Hong, Chen; John D, McConnell; Nora, Navone; Jer-Tsong, Hsieh;

The mechanism of growth-inhibitory effect of DOC-2/DAB2 in prostate cancer. Characterization of a novel GTPase-activating protein associated with N-terminal domain of DOC-2/DAB2.

Abstract

DOC-2/DAB2 is a member of the disable gene family with tumor-inhibitory activity. Its down-regulation is associated with several neoplasms, and serine phosphorylation of its N terminus modulates DOC-2/DAB2's inhibitory effect on AP-1 transcriptional activity. We describe the cloning of DIP1/2, a novel gene that interacts with the N-terminal domain of DOC-2/DAB2. DIP1/2 is a novel GTPase-activating protein containing a Ras GTPase-activating protein homology domain (N terminus) and two other unique domains (i.e. 10 proline repeats and leucine zipper). Interaction between DOC-2/DAB2 and DIP1/2 is detected in normal tissues such as the brain and prostate. Altered expression of these two proteins is often detected in prostate cancer cells. Indeed, the presence of DIP1/2 effectively blocks mitogen-induced gene expression and inhibits the growth of prostate cancer. Thus, DOC-2/DAB2 and DIP1/2 appear to represent a unique negative regulatory complex that maintains cell homeostasis.

Keywords

Male, DNA, Complementary, Base Sequence, Sequence Homology, Amino Acid, GTPase-Activating Proteins, Molecular Sequence Data, Prostatic Neoplasms, Proteins, Adaptor Proteins, Vesicular Transport, COS Cells, Tumor Cells, Cultured, Animals, Humans, Genes, Tumor Suppressor, Amino Acid Sequence, Cloning, Molecular, Apoptosis Regulatory Proteins, Cell Division, Adaptor Proteins, Signal Transducing, DNA Primers

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    136
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
136
Top 10%
Top 10%
Top 10%