Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research Collectionarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research Collection
Article . 2022
License: CC BY
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thermodynamically admissible 13-moment equations

Authors: Struchtrup, Henning; Öttinger, Hans Christian; id_orcid0000-0003-0096-3176;

Thermodynamically admissible 13-moment equations

Abstract

Grad's 13-moment equations describe transport in mildly rarefied gases well, but are not properly embedded into nonequilibrium thermodynamics since they are not accompanied by a formulation of the second law. In this work, the Grad-13 equations are embedded into the framework of GENERIC (general equation for the nonequilibrium reversible–irreversible coupling), which demands additional contributions in the equations to guarantee thermodynamic structure. As GENERIC building blocks, we use a Poisson matrix for the basic convection behavior and antisymmetric friction matrices to correct for additional convective transport terms. The ensuing GENERIC-13 equations completely match the Grad-13 equations up to second-order terms in the Knudsen number and fulfill all thermodynamic requirements.

ISSN:1070-6631

ISSN:1089-7666

ISSN:0031-9171

Country
Switzerland
Related Organizations
Keywords

Fluid dynamics; Nonequilibrium thermodynamics; Hamiltonian mechanics; Thermodynamic properties; Nonequilibrium statistical mechanics; Lie algebras; Moment equations; Statistical mechanics theorems; Rarefied gas dynamics; Navier Stokes equations

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green