Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ LAReferencia - Red F...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

PI-Expoente de álgebras associativas

Authors: Silva, Renata Alves da;

PI-Expoente de álgebras associativas

Abstract

Sejam A uma PI-álgebra associativa sobre um corpo F de característica zero e {cn(A)} a sequência de codimensões de A. Neste trabalho vamos estudar o comportamento destas sequências. Regev mostrou que a sequência de codimensões é exponencialmente limitada. O nosso objetivo principal é apresentar os resultados obtidos por A. Giambruno e M. Zaicev em |4|, onde demonstram que o PI-expoente de A, denotado por ?, sempre existe e é um inteiro. Daremos uma maneira explícita de calcular este expoente. Usaremos a teoria de representações do grupo simétrico para obtermos os resultados. _______________________________________________________________________________________ ABSTRACT

Let A be an associative algebra over a eld F of characteristic zero satisfying a polynomial identity (PI-algebra), and {cn(A)} be the sequence of codimensions of the A. In this paper we study the behavior of these sequences. Regev showed that a sequence is exponentially codimensions limited. Our main goal is to show the results obtained by A. Giambruno and M. Zaicev in |4|, where they prove that the PI-exponent of A, denoted by ?, exists and is an integer. We will give an explicit way to calculate this exponent. We use the representation theory of the symetric group to obtain the results.

Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2013.

Keywords

Álgebra, Polinômios

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average