
Sejam R um anel topológico e G um R-módulo topológico à direita. Estudaremos a estrutura algébrica do conjunto N R (G) = {f : G → G tal que f ´e R-homogênea e contínua}. Estabeleceremos algumas relações entre a primalidade do anel R e a primalidade do quase-anel N R (G). Sob algumas circunstâncias topológicas, encontraremos condições necessárias e suficientes para que N R (G) tenha estrutura de anel.
Let R be a topological ring and G a right topological R-module. We study the algebraic structure of the set N R (G) = {f : G → G such that f is R-homogeneous and continuous}. We establish some relations between the primeness of the ring R and the primeness of the near-ring N R (G). Under some topological circumstances, we find necessary and sufficient conditions for N R (G) to have a ring structure.
Quaseanel, Anel topológico, Topological ring, Near-ring, Continuous homogeneous map, Aplicações homogêneas contínuas, Primalidade
Quaseanel, Anel topológico, Topological ring, Near-ring, Continuous homogeneous map, Aplicações homogêneas contínuas, Primalidade
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
