Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

On M-spaces and M*-spaces

Authors: Nuckols, Thomas Ryland;
Abstract

In this thesis we investigate the properties of M-spaces and M*-spaces, which are generalized metric spaces. Chapter II is devoted to preliminary results, and in Chapter III we prove the characterization for M-spaces theorem of K. Morita [12]. This theorem states that a space X is an M-space if and only if there exists a quasi-perfect map from X onto a metrizable space T. Chapter IV is concerned with the relationships between M-spaces and M*-spaces. We first prove an M-space is an expandable, M*'-space and then show that every normal, expandable, M*-space is an M-space. Using Katetov's Theorem, we show that in a collectionwise normal space, X is an M-space if and only if it is an M*-space. We conclude by generalizing this to the following. In a normal space X, X is an M-space if and only if it is an M*-space. Chapter V is concerned with the study of M-spaces and M*-spaces under quasi-perfect maps. We also prove the Closed Subspace Theorem for M-spaces and M*-spaces and establish the Locally Finite Sum Theorem for M-spaces and M*-spaces. In Chapter VI, we give an example of a T₂, locally compact M-space X, which is not normal and therefore not metrizable. We also give an example of a T₂, locally compact M*-space Y, which is not an M-space, but is however the image of X under a quasi-perfect mapping.

Master of Science

Country
United States
Related Organizations
Keywords

LD5655.V855 1970.N8

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!