Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Pagenumber of Genus g Graph is 0(g)

Authors: Heath, Lenwood S.; Istrail, Sorin;

The Pagenumber of Genus g Graph is 0(g)

Abstract

In 1979, Berhart and Kainen conjectured that graphs of fixed genus g greater than or equal to 1 have unbounded pagenumber. This proves that genus g graphs can be embedded in 0(g) pages, thus disproving the conjecture. An Omega(square root of g) lower bound is also derived. The first algorithm in the literature for embedding an arbitrary graph in a book with a non-trivial upper bound on the number of pages is presented. First, the algorithm computes the genus g of a graph using the algorithm of Filotti, Miller, Reif (1979), which is polynomial-time for fixed genus. Second, it applies an optimal-time algorithm for obtaining an 0(g)-page book embedding. We give separate book embedding algorithms for the cases of graphs embedded in orientable and nonorientable surfaces. An important aspect of the construction is a new decomposition algorithm, of independent interest, for a graph embedded on a surface. Book embedding has application in several areas, two of which are directly related to the results obtained: fault-tolerant VLSI and complexity theory.

Country
United States
Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!