Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ South Ural State Uni...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Об одном методе сквозного счета ударных волн

Authors: Kuropatenko, V. F.;

Об одном методе сквозного счета ударных волн

Abstract

Сильные разрывы – ударные волны возникают в сплошной среде при динамических внешних воздействиях. На поверхности сильных разрывов законы сохранения принимают вид нелинейных алгебраических уравнений, связывающих скачки величин по обе стороны разрыва. На сильном разрыве энтропия терпит скачок. В этом заключается принципиальное различие между ударными волнами и волнами с непрерывным изменением величин. В однородных разностных методах сильный разрыв заменяется слоем конечной ширины, сравнимой с размером сеточной ячейки. Такое свойство разностных схем получило название дистракции. Поскольку состояние за разрывом связано ударной адиабатой с состоянием перед разрывом, то в области дистракции сильного разрыва должен действовать механизм, обеспечивающий возрастание энтропии. Физическая вязкость и теплопроводность в уравнениях механики сплошной среды не устраняют необходимости введения поверхности сильного разрыва и, следовательно, не могут обеспечить величину дистракции, сравнимую, с несколькими ячейками разностной сетки. В работе рассмотрены несколько разностных схем, в которых диссипация энергии в слое дистракции определяется уравнениями, справедливыми на поверхности сильного разрыва. Strong discontinuities, or shocks in continua are a result of external dynamic loads. On the shock surface the conservation laws take the form of nonlinear algebraic equations for jumps across the shock. Entropy jumps across a strong discontinuity, and just this jump differs shocks from waves where the quantities vary continuously. In the heterogeneous difference schemes, the shock is treated as a layer of a finite thickness comparable with the cell size. This property of finite-difference schemes was called distraction. Since the state behind a shock is related to the state before it by the Hugoniot, in the distraction region there must act a mechanism that increases entropy. The physical viscosity and heat conductivity in continuum mechanics equations do not make it unnecessary to introduce a shock surface and hence cannot make the distraction length comparable with a few cells of the difference mesh. The paper considers a number of finite difference schemes where energy dissipation in the distraction region is defined by equations which are valid on the shock surface. Валентин Федорович Куропатенко, доктор физико-математических наук, профессор, главный научный сотрудник, Российский федеральный ядерный центр – Всероссийский научно-исследовательский институт технической физики им. академика Е.И. Забабахина (г. Снежинск, Челябинская обл., Российская Федерация), v.f.kuropatenko@rambler.ru. V.F. Kuropatenko, Russian Federal Nuclear Center – Zababakhin Institute of Applied Physics, Snezhinsk, Russian Federation, v.f.kuropatenko@rambler.ru

Country
Russian Federation
Keywords

energy dissipation, shock wave, законы сохранения, ГРНТИ 27.35, ударная волна, УДК 519.63, energy dissipation conservation laws, differential method, conservation laws, диссипация энергии, разностный метод, distraction, дистракция

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green