Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ South Ural State Uni...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Асимптотика решения сингулярно возмущенной задачи Дирихле со слабой особой точкой

Authors: Tursunov, D.A.; Alymkulov, K.; Azimov, B.A.;

Асимптотика решения сингулярно возмущенной задачи Дирихле со слабой особой точкой

Abstract

Д.А. Турсунов, К. Алымкулов, Б.А. Азимов, Ошский государственный университет, г. Ош, Кыргызская Республика E-mail: tdaosh@gmail.com. D.A. Tursunov, K. Alymkulov, B.A. Azimov Osh State University, Osh, Kyrgyzstan E-mail: tdaosh@gmail.com Рассматривается задача Дирихле для сингулярно возмущенного, линейного, однородного обыкновенного дифференциального уравнения второго порядка с негладким коэффициентом в действительной оси. Подобные задачи встречаются в физике, технике, механике сплошной среды, гидродинамике и др. Целью исследования является развитие асимптотического метода пограничных функций Вишика–Люстерника–Васильевой–Иманали- ева для сингулярно возмущенных дифференциальных уравнений, в случае, когда соответствующее невозмущенное уравнение имеет негладкое решение в рассматриваемой области. По терминологии А.М. Ильина подобные задачи называют бисингулярными. В работе доказывается возможность применения обобщенного метода пограничных функций к построению полного, равномерного асимптотического разложения решения краевой задачи для сингулярно возмущенного, линейного обыкновенного дифференциального уравнения второго порядка со слабой особой точкой или интегрируемой особой точкой. Построенное разложение решения является асимптотическим в смысле Эрдей. При построении равномерного асимптотического разложения решения задачи Дирихле использованы: метод малого параметра, метод математической индукции, классический метод пограничных функций, обобщенный метод пограничных функций и принцип максимума. С помощью принципа максимума получена оценка для остаточного члена асимптотического разложения, т. е. равномерное, полное асимптотическое разложение решения по малому параметру обосновано. Приведен конкретный пример. The Dirichlet problem for a singularly perturbed linear homogeneous ordinary differential equation of second order with a nonsmooth coefficient in real axis is considered. Such problems can be seen in physics, engineering, continuum mechanics, hydrodynamics, etc. Object of the research is to develop the asymptotic technique of boundary functions of Vishik–Lusternik–Vasilyeva–Imanaliev for singularly perturbed differential equations in case when the corresponding non-perturbed equation has nonsmooth solution in the considered area. According to terminology of A.M. Ilyin, such problems are called bisingular. The possibility to use a generalized method of boundary functions for constructing a complete proportional asymptotic expansion of the boundary problem solution for a singularly perturbed linear ordinary differential equation of second order with a weak critical point or an integrable critical point is proved in the article. The constructed expansion of solution is asymptotic in the sense of Erdey. When constructing the proportional asymptotic expansion of the Dirichlet problem, the following methods were used: small parameter method, method of mathematical induction, classical method of boundary functions, and the principle of maximum. Using the principle of maximum, an assessment for the asymptotic expansion’s remainder term is obtained, i.e. the proportional complete asymptotic expansion of the solution by small parameter is proved. A specific example is given.

Country
Russian Federation
Keywords

bisingular problem, бисингулярная задача, малый параметр, асимптотическое решение, small parameter, boundary functions, пограничные функции, УДК 517.928, задача Дирихле, asymptotic solution, Dirichlet problem

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green