
Загревский Валерий Иннокентьевич, доктор педагогических наук, профессор, профессор кафедры теории и методики физического воспитания, Могилевский государственный университет имени А. А. Кулешова. 212022, Беларусь, г. Могилев, ул. Космонавтов, 1; профессор кафедры гимнастики и спортивных игр, Национальный исследовательский Томский государственный университет. 634050, г. Томск, пр. Ленина, 36. E-mail: zvi@tut.by, ORCID: 0000-0002-2128-6066. Загревский Олег Иннокентьевич, доктор педагогических наук, профессор, научный руководитель института физической культуры, Тюменский государственный университет. 625003, г. Тюмень, ул. Володарского, 6; профессор кафедры гимнастики и спортивных игр, Национальный исследовательский Томский государственный университет. 634050, г. Томск, пр. Ленина, 36. E-mail: O.Zagrevsky@ yandex.ru, ORCID: 0000-0002-1758-6592. V.I. Zagrevskiy12, zvi@tut.by, ORCID: 0000-0002-2128-6066, O.I. Zagrevskiy2,3, O.Zagrevsky@yandex.ru, ORCID: 0000-0002-1758-6592 1Mogilev State University named after A.A. Kuleshov, Mogilev, Republic of Belarus, 2National Research Tomsk State University, Tomsk, Russian Federation, 3Tyumen State University, Tyumen, Russian Federation Цель. Разработать компьютерную программу моделирования движения объекта с заданной начальной и конечной скоростью и фиксированным временем перемещения. Материалы и методы. Анализ как метод биомеханики позволяет дать оценку биомеханического состояния спортсмена в реально выполняемых спортивных упражнениях. Функция синтеза движений - возможность предсказать траекторию и поведение биомеханической системы в заданных опорных точках фазовой структуры моделируемого движения. Рассматривается один из методов биомеханического синтеза движений: синтез управления конечным состоянием биомеханических систем, основанный на приведении финитного управления к заданному программному управлению после затухания переходной составляющей ускорения. Математическое описание движения объекта основано на известном законе финитного управления с обратной связью. Интегрирование математической модели, построенной в форме дифференциального уравнения второго порядка, осуществлялось одним из численных методов интегрирования: методом Рунге-Кутты четвертого порядка точности. Рассмотрение метода построено на математическом аппарате моделирования, описывающем движение материальной точки, в качестве которой может быть выбран общий центр масс биомеханической системы, сустав, центр масс сегмента и т. п. Результаты. Математическая модель движения материальной точки с заданными кинематическими параметрами движения в начальный и конечный моменты времени реализована в компьютерной программе в языковой среде Visual Basic 2010 на базе интегрированной среды разработки Visual Studio Express 2013. На выходе обеспечивается числовая и визуальная поддержка результатов моделирования. Заключение. Показано, что разработанная компьютерная модель метода всегда реализует цель движения: перевести объект из заданного начального состояния по скорости в заданное конечное состояние за фиксированное время перемещения. Aim. The article deals with developing a computer program to simulate the movement of the object with a given initial and final speed and fixed travel time. Materials and methods. The analysis, as a method of biomechanics, allows us to assess the biomechanical state of the athlete in real sports exercises. The function of motion synthesis is the ability to predict the trajectory and behavior of the biomechanical system at specified reference points of the phase structure of the simulated motion. The article deals with one of the methods of biomechanical synthesis of movements: synthesis of control of the final state of biomechanical systems, based on the reduction of finite control to a given program control after attenuation of the transient component of acceleration. The mathematical description of the object motion is based on the known law of finite control with feedback. Integration of the mathematical model constructed in the form of the differential equation of the second order was carried out by one of the numerical methods of integration: Runge-Kutta method of the fourth order of accuracy. Consideration of the method is based on a mathematical apparatus describing the motion of a material point, which can be represented by a common center of mass of a biomechanical system, a joint, a center of mass of a segment, etc. Results. The mathematical model of the motion of a material point with the given kinematic parameters of motion at the initial and final moments is implemented in a computer program in the Visual Basic 2010 language environment based on the integrated development environment Visual Studio Express 2013. The output provides numerical and visual support for simulation results. Conclusion. It is shown that the developed computer model of the method always implements the goal of motion: to transfer an object from a given initial state by speed to a given final state for a fixed time of movement.
УДК 796.012, синтез, биомеханическая система, анализ, synthesis, analysis, техника упражнения, biomechanical system, управление, exercise technique, control
УДК 796.012, синтез, биомеханическая система, анализ, synthesis, analysis, техника упражнения, biomechanical system, управление, exercise technique, control
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
