Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ South Ural State Uni...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Голоморфные вырожденные полугруппы операторов и эволюционные уравнения соболевского типа в квазисоболевых пространствах последовательностей

Authors: Zamyshlyaeva, A. A.; Al-Isawi, J. K. T.;

Голоморфные вырожденные полугруппы операторов и эволюционные уравнения соболевского типа в квазисоболевых пространствах последовательностей

Abstract

Интерес к уравнениям соболевского типа за последнее время существенно вырос, более того, возникла необходимость их рассмотрения в квазибанаховых пространствах. Эта необходимость диктуется не столько желанием пополнить теорию, сколько стремлением осмыслить неклассические модели математической физики в квазибанаховых пространствах. Заметим еще, что уравнения соболевского типа называются эволюционными, если их решения существуют только на полуоси R+ . Теория голоморфных вырожденных полугрупп операторов, построенная ранее в банаховых пространствах и пространствах Фреше, переносится в квазисоболевы пространства последовательностей. Статья содержит четыре параграфа. В первом, имеющем вспомогательное значение, рассматриваются квазибанаховы пространства и определенные на них линейные ограниченные и замкнутые операторы. Также вводятся в рассмотрение квазисоболевы пространства, на которых строятся степени квазиоператора Лапласа. Во втором параграфе в качестве операторов L и M рассмотрены многочлены от квазиоператора Лапласа и получены условия, при которых возникают голоморфные вырожденные полугруппы операторов в квазибанаховых пространствах последовательностей U и F . Другими словами, доказывается первая часть обобщения теоремы Соломяка – Иосиды на квазибанаховы пространства последовательностей. В третьем параграфе строится фазовое пространство однородного уравнения. В последнем параграфе содержится «квазибанахов» аналог однородной задачи Дирихле в ограниченной области с гладкой границей для линейного уравнения Дзекцера. The interest to Sobolev type equations has significantly increased recently, moreover, the need occured to consider them in quasi-Banach spaces. This need is explained not by the desire to enrich the theory but rather by the aspiration to comprehend non-classical models of mathematical physics in quasi-Banach spaces. It should be noted that Sobolev type equations are called evolutionary, provided their solutions exist only on R+ . The theory of holomorphic degenerate semigroups of operators constructed earlier in Banach and Frechet spaces is transferred to quasi-Sobolev spaces of sequences. Besides the introduction and references the paper contains four paragraphs. In the first, quasi-Banach spaces and linear bounded and closed operators defined on them are considered. Quasi-Sobolev spaces and powers of the Laplace quasi-operator are also taken into consideration. In the second paragraph polynomials of the Laplace quasi-operator are considered for operators L and M and conditions for the existence of degenerate holomorphic operator semigroups in quasi-Banach spaces of sequences are obtained. In other words, the first part of the generalization of the Solomyak–Iosida theorem to quasi-Banach spaces of sequences is stated. In the third paragraph the phase space of the homogeneous equation is constructed. The last paragraph investigates the "quasi-Banach" analogue of the homogeneous Dirichlet problem in a bounded domain with a smooth boundary for the linear Dzektser equation. Замышляева Алена Александровна – доктор физико-математических наук, доцент, профессор кафедры уравнений математической физики, Южно-Уральский государственный университет, г. Челябинск, Российская Федерация. E-mail: alzama@mail.ru Аль-Исави Джавад К.T. – аспирант кафедры уравнений математической физики, Южно-Уральский государственный университет, г. Челябинск, Российская Федерация. E-mail: jtahir71@gmail.ru. Zamyshlyaeva Alyona Aleksandrovna is Dr. Sc. (Physics and Mathematics), Associate Professor, Equations of Mathematical Physics Department, South Ural State University, Chelyabinsk, Russia. E-mail: alzama@mail.ru Jawad K.T. Al-Isawi is Post-graduate student, Equations of Mathematical Physics Department, South Ural State University, South Ural State University, Chelyabinsk, Russia. E-mail: jtahir71@gmail.ru

Country
Russian Federation
Keywords

ГРНТИ 27.39, Dzektser equation, голоморфные вырожденные полугруппы, квазисоболевы пространства, holomorphic degenerate semigroups, УДК 517.9, УДК 517.98, quasi-Sobolev spaces, уравнение Дзекцера, квазибанаховы пространства, quasi-Banach spaces

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green