Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ South Ural State Uni...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Неклассические модели математической физики

Authors: Sviridyuk, G. A.; Zagrebina, S. A.;

Неклассические модели математической физики

Abstract

Неклассическими называют те модели математической физики, чьи представления в виде уравнений или систем уравнений в частных производных не укладываются в рамках одного из классических типов – эллиптического, параболического или гиперболического. В частности, к неклассическим относятся модели, описываемые уравнениями смешанного типа (например, уравнением Трикоми), вырождающимися уравнениями (например, уравнением Келдыша) или уравнениями соболевского типа (например, уравнением Баренблатта – Желтова-Кочиной). Статья содержит обзор некоторых, на наш взгляд, главных достижений А.И. Кожанова в области неклассических моделей математической физики. Основные его достижения в области линейных неклассических моделей относятся к теории уравнений составного типа, где он развил практически до совершенства метод априорных оценок и сделал максимально возможные обобщения. Кроме того, метод априорных оценок наряду с принципом сравнения А.И. Кожанов весьма эффективно применял для изучения нелинейных неклассических моделей таких как обобщенное фильтрационное уравнение Буссинеска, а также классических нелинейных моделей, в частности, моделей джозефсоновского контакта. Особое место в творчестве А.И. Кожанова занимают обратные коэффициентные задачи, где наряду с решением требуется найти еще и неизвестный коэффициент. И здесь он получил выдающиеся результаты как в линейном, так и в нелинейном случаях. Nonclassical called the models of mathematical physics, whose representation in the form of equations or systems of partial differential equations do not fit into one of the classical types – elliptic, parabolic or hyperbolic. In particular, the non-classical model are described by the equations of mixed type (eg, Tricomi equation), the degenerate equation (for example, the Keldysh equation) or the equations of Sobolev type (eg, Barenblatt –Zheltov – Kochina equation). The article provides an overview of some, in our opinion –the main A.I. Kozhanov achievements in the field of non-classical models of mathematical physics. His major achievements in the field of non-classical linear models belong to the theory of composite type equations, where he developed almost to perfection the method of a priori estimates and did the maximum possible generalization. Furthermore, the method of a priori estimates, along with the principle of comparing A.I. Kozhanov very effectively applied to the study of non-linear non-classical models such as the generalized Boussinesq filtration equation and classical nonlinear models, including models of the Josephson junction. Special place in activity of A.I. Kozhanov take the inverse problem, which, along with the decision and want to find another unknown factor. Here he received outstanding results in both linear and nonlinear cases. Георгий Анатольевич Свиридюк, доктор физико-математических наук, профессор, кафедра ≪Уравнения математической физики≫, Южно-Уральский государственный университет (г. Челябинск, Российская Федерация), Georgy_Sviridyuk@mail.ru. G.A. Sviridyuk, South Ural State University (Chelyabinsk, Russian Federation). Загребина Софья Александровна, кандидат физико-математических наук, доцент, кафедра ≪Уравнения математической физики≫, Южно-Уральский государственный университет (г. Челябинск, Российская Федерация), zagrebina_sophiya@mail.ru. S.A. Zagrebina, South Ural State University (Chelyabinsk, Russian Federation)

Country
Russian Federation
Keywords

weakened Showalter –Sidorov problem, УДК 517.983, composite type equations, обобщенное фильтрационное уравнение Буссинеска, generalized filtration Boussinesq equation, УДК 517.95, уравнения соболевского типа, inverse coefficient problems, уравнения составного типа, Sobolev type equations, обратные коэффициентные задачи, 530.145.1 [УДК 517.958]

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green