Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ South Ural State Uni...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Условия разрешимости задачи Неймана N2 для полигармонического уравнения в шаре

Authors: Karachik, V.V.;

Условия разрешимости задачи Неймана N2 для полигармонического уравнения в шаре

Abstract

В.В. Карачик Южно-Уральский государственный университет, г. Челябинск, Российская Федерация E-mail: karachik@susu.ru V.V. Karachik South Ural State University, Chelyabinsk, Russian Federation E-mail: karachik@susu.ru Рассмотрен класс задач типа Неймана, зависящий от натурального параметра k, для полигармонического уравнения в единичном шаре. Задачи этого класса обобщают как известную задачу Дирихле, так и задачу Неймана. В ряде работ для класса таких задач было найдено множество необходимых условий разрешимости этой задачи и было выдвинуто предположение, что наиболее полный вариант найденных необходимых условий является также и набором достаточных условий разрешимости задачи. Для задачи N1 этот факт был известен. В настоящей работе для задачи N2 , для однородного m -гармонического уравнения в единичном шаре, доказывается предположение о совпадении найденного ранее множества необходимых условий с достаточными условиями разрешимости этой задачи. Сначала с помощью замены переменных задача N2 сводится к более простой задаче Дирихле N0 , решение которой считается известным. Затем находятся условия, при которых сделанная замена переменных обратима. Найденные здесь условия связаны с наличием у решения задачи Дирихле членов первого порядка малости в ее разложении в окрестности нуля. Затем используются ранее полученные результаты о связи значения m -гармонической в единичном шаре функции в центре шара со значениями нормальных производных этой функции на границе шара. Полученные условия разрешимости преобразуются к условиям, связанным со значениями интегралов по сфере от полиномов от нормальных производных искомого решения на единичной сфере, коэффициенты которых являются элементами арифметического треугольника Неймана. Найденные условия совпадают с полученными ранее необходимыми условиями разрешимости задачи N2. The Nk Neumann-type class of problems for a polyharmonic equation in the unit ball is considered. The problems of this class generalize both the well-known Dirichlet problem and the Neumann problem. In a number of works, the set of the necessary conditions for the solvability of this problem has been found for the problems of such class, and it has been assumed that the most complete version of the found necessary conditions is also a set of the sufficient conditions for the solvability of the problem. This was a known fact with regard to the N1 problem. In this study, an assumption that the found set of the necessary conditions coincides with the sufficient conditions of solvability of the N2 problem for a homogeneous m -harmonic equation in a unit ball is proved. First, by changing the variables, the N2 problem is reduced to a simpler N0 Dirichlet problem, the solution to which is considered to be known. Next, the conditions, under which the performed change of the variables is reversible, are found. The conditions found here are connected with the Dirichlet problem's solution having terms of the first order of smallness in the expansion in the neighborhood of zero. Finally, the previously obtained results are used, which concern the value of the m-harmonic function in the unit ball in the center of the ball with the values of the normal derivatives of this function at the boundary of the ball. These solvability conditions are transformed to the conditions associated with the values of the integrals over the sphere of polynomials in the normal derivatives of the desired solution on the unit sphere, the coefficients of which which are the elements of the arithmetic Neumann triangle. The found conditions coincide with the previously obtained necessary conditions for the solvability of the N2 problem.

Keywords

УДК 517.575, polyharmonic equation, условия разрешимости, УДК 517.956.223, solvability conditions, полигармоническое уравнение, задача типа Неймана, Neumann-type problem

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green