
Д.А. Турсунов1, У.З. Эркебаев2. 1 Уральский государственный педагогический университет, г. Екатеринбург, Российская Федерация 2 Ошский государственный университет, г. Ош, Киргизия. D.A. Tursunov1, U.Z. Erkebaev2 1 Urals State Pedagogical University, Ekaterinburg, Russian Federation 2 Osh State University, Osh, Kyrgyzstan E-mail: d_osh@rambler.ru Целью исследования является развитие асимптотического метода пограничных функций для бисингулярно возмущенных задач. В работе доказана возможность применения обобщенного метода пограничных функций к построению полного асимптотического разложения решения задачи Дирихле для бисингулярно возмущенного, линейного, неоднородного, эллиптического уравнения второго порядка с двумя независимыми переменными в кольце с квадратичным ростом на границе. Построенный асимптотический ряд представляет собой ряд Пюйзо. Построенное разложение обосновано принципом максимума. The Dirichlet problem for elliptic equations with a small parameter in the highest derivatives takes a unique place in mathematics. In general case it is impossible to build explicit solution to these problems, which is why the researchers apply different asymptotic methods. The aim of the research is to develop the asymptotic method of boundary functions for constructing complete asymptotic expansions of the solutions to such problems. The proposed generalized method of boundary functions differs from the matching method in the fact that the growing features of the outer expansion are actually removed from it and with the help of the auxiliary asymptotic series are fully included in the internal expansions, and differs from the classical method of boundary functions in the fact that the boundary functions decay in power-mode nature and not exponentially. Using the proposed method, a complete asymptotic expansion of the solution to the Dirichlet problem for bisingular perturbed linear inhomogeneous second-order elliptic equations with two independent variables in the ring with quadratic growth on the boundary is built. A built asymptotic series corresponds to the Puiseux series. The basic term of the asymptotic expansion of the solution has a negative fractional degree of the small parameter, which is typical for bisingular perturbed equations, or equations with turning points. The built expansion is justified by the maximum principle.
задача Дирихле для кольца, обобщенный метод пограничных функций, elliptic equation, бисингулярное возмущение, малый параметр, small parameter, уравнение эллиптического типа, Asymptotic expansion of a solution, модифицированные функции Бесселя, асимптотическое разложение решения, bisingular perturbation, Dirichlet problem in the ring, УДК 517.955.8, modified Bessel functions, boundary functions, пограничные функции, generalized method of boundary functions
задача Дирихле для кольца, обобщенный метод пограничных функций, elliptic equation, бисингулярное возмущение, малый параметр, small parameter, уравнение эллиптического типа, Asymptotic expansion of a solution, модифицированные функции Бесселя, асимптотическое разложение решения, bisingular perturbation, Dirichlet problem in the ring, УДК 517.955.8, modified Bessel functions, boundary functions, пограничные функции, generalized method of boundary functions
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
