
Рассматривается обобщение известной формулы Альманси на невырожденные дифференциальные операторы второго порядка с постоянными коэффициентами. Приводится простая формула нахождения первого гармонического составляющего в классической формуле Альманси. Generalization of the known Almansi decomposition formula to non-singular second order partial differential operators with constant coefficients is considered. A simple formula for determining the first harmonic function in the classical Almansi decomposition is given. Karachik Valeriy Valentinovich is Dr.Sc. (Physics and Mathematics), Professor, Mathematical Analysis Department, the Mechanical-Technological Faculty, South Ural State University. Карачик Валерий Валентинович - профессор, доктор физико-математических наук, кафедра математического анализа, механико-математический факультет, Южно-Уральский государственный университет. e-mail: karachik@susu.ru
формула Альманси, полиномиальные решения, Almansi decomposition, polynomial solutions, дифференциальные операторы второго порядка, УДК 517.956, second order partial differential operators
формула Альманси, полиномиальные решения, Almansi decomposition, polynomial solutions, дифференциальные операторы второго порядка, УДК 517.956, second order partial differential operators
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
