Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ MPG.PuRearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
MPG.PuRe
Report . 1994
Data sources: MPG.PuRe
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Some correlation inequalities for probabilistic analysis of algorithms

Authors: Dubhashi, D.; Ranjan, D.;

Some correlation inequalities for probabilistic analysis of algorithms

Abstract

The analysis of many randomized algorithms, for example in dynamic load balancing, probabilistic divide-and-conquer paradigm and distributed edge-coloring, requires ascertaining the precise nature of the correlation between the random variables arising in the following prototypical ``balls-and-bins'' experiment. Suppose a certain number of balls are thrown uniformly and independently at random into $n$ bins. Let $X_i$ be the random variable denoting the number of balls in the $i$th bin, $i \in [n]$. These variables are clearly not independent and are intuitively negatively related. We make this mathematically precise by proving the following type of correlation inequalities: \begin{itemize} \item For index sets $I,J \subseteq [n]$ such that $I \cap J = \emptyset$ or $I \cup J = [n]$, and any non--negative integers $t_I,t_J$, \[ \prob[\sum_{i \in I} X_i \geq t_I \mid \sum_{j \in J} X_j \geq t_J] \] \\[-5mm] \[\leq \prob[\sum_{i \in I} X_i \geq t_I] .\] \item For any disjoint index sets $I,J \subseteq [n]$, any $I' \subseteq I, J' \subseteq J$ and any non--negative integers $t_i, i \in I$ and $t_j, j \in J$, \[ \prob[\bigwedge_{i \in I}X_i \geq t_i \mid \bigwedge_{j \in J} X_j \geq t_j]\]\\[-5mm]\[ \leq \prob[\bigwedge_{i \in I'}X_i \geq t_i \mid \bigwedge_{j \in J'} X_j \geq t_j] . \] \end{itemize} Although these inequalities are intuitively appealing, establishing them is non--trivial; in particular, direct counting arguments become intractable very fast. We prove the inequalities of the first type by an application of the celebrated FKG Correlation Inequality. The proof for the second uses only elementary methods and hinges on some {\em monotonicity} properties. More importantly, we then introduce a general methodology that may be applicable whenever the random variables involved are negatively related. Precisely, we invoke a general notion of {\em negative assocation\/} of random variables and show that: \begin{itemize} \item The variables $X_i$ are negatively associated. This yields most of the previous results in a uniform way. \item For a set of negatively associated variables, one can apply the Chernoff-Hoeffding bounds to the sum of these variables. This provides a tool that facilitates analysis of many randomized algorithms, for example, the ones mentioned above.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green